Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano’s Pu‘u ‘Ō‘ō eruption

نویسندگان

  • Patrick J. Shamberger
  • Michael O. Garcia
چکیده

Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3–31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical timeseries data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ∼3 to ∼10–12 million m. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The size and shape of Kilauea Volcano’s summit magma storage reservoir: a geochemical probe

One of the most important components of the magmatic plumbing system of Kilauea Volcano is the shallow (2–4 km deep) magma storage reservoir that underlies the volcano’s summit region. Nevertheless, the geometry (shape and size) of Kilauea’s summit reservoir is controversial. Two fundamentally different models for the reservoir’s shape have been proposed based on geophysical observations: a ple...

متن کامل

Magma flow between summit and Pu‘u ‘ O‘ o at K ılauea Volcano, Hawai‘i

[1] Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K ılauea Volcano, Hawai‘i, caused by magma withdrawal during the early eruptive episodes (1983–1985) of the ongoing Pu‘u ‘ O‘ o-Kupaianaha erup...

متن کامل

Volumes of lunar lava ponds in South Pole-Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions

In an effort to characterize individual eruptive phases and events, 86 isolated mare deposits (ponds) in the lunar South Pole-Aitken and Orientale regions were analyzed to obtain information on areas, volumes, and other characteristics. Deposits likely to represent single eruptive episodes have area mean values of-2000 km 2 in the South Pole-Aitken Basin and -1100 km 2 in the Orientale Basin. P...

متن کامل

Investigation of the role of fractional crystallization, crustal assimilation and magma mixing in turquoise hosted sub-volcanic intrusion rocks in south of Damghan mine, Iran.

Granodiorite and dioritic intrusive rocks (Middle Eocene age) intruded the Lower-Middle Eocene volcanic rocks at the northern parts of the Torud-Chah Shirin volcano-plutonic belt in north east of Iran. This granodiorite is intruded by small rhyolitic dome in the Damghan turquoise-gold mine. According to all data, these intrusive rocks are related to a common source. The primary magma evolved by...

متن کامل

Long-term explosive degassing and debris flow activity at West Mata submarine volcano

WestMata is a 1200mdeep submarine volcano where explosive boninite eruptions were observed in 2009. The acoustic signatures from the volcano’s summit eruptive vents Hades and Prometheus were recorded with an in situ (~25m range) hydrophone during ROV dives in May 2009 and with local (~5 km range) moored hydrophones between December 2009 and August 2011. The sensors recorded low frequency (1–40 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007